YateHSS/HLR breaks the barriers to entry into the MVNO and IoT markets

YateHSS/HLR delivers failover cluster, load-balancing and scalability features inside a cluster at an affordable price, breaking the barriers to entry the market for MVNOs and IoT products manufacturers, leading to a positive ROI from an early stage of the business.

clustering_blogpost_y-hss-hlr_serverDell PowerEdge430 server – off-the-shelf hardware for the YateHSS/HLR

The YateHSS/HLR was designed to be flexible over time, safe for the mobile operators and IoT businesses and with low CapEx and OpEx requirements.

  • It’s flexible over time because YateHSS/HLR uses off-the-shelf hardware (Dell servers) and runs on Linux OS; in time you can upgrade the software or change the hardware at a low OpEx.
  • It’s safe because our network database solution is organized into clusters of equal YateHSS/HLR servers, load-balanced, easy to scale and redundant.
  • We practice transparency for the price of our products, see for yourself. At this price, the YateHSS/HLR solution significantly lowers the barriers to entry a new market and the CapEx of the business.
  • The cluster solution includes the YateMMI management web-interface, a JSON API for configuration and setting up services and SIM profiles, and an HTTP hook to access your own web tools or platforms.
  • YateHSS/HLR supports the following profiles: Wi-Fi, EPC, IMS, CS, PS.
clustering_blogpost_clustering Cluster architecture of the YateHSS/HLR solution

We created the solution to be affordable and to have all the features for network stability. One server supports approximately 100.000 subscribers. For small networks, the investment is as low as $1/ subscriber and for large networks of less than $0.50/ subscriber.

Stability comes from the cluster’s load-balancing feature. Subscribers’ services are distributed between the nodes in the cluster and millions of operations can take place at the same time without the risk of capacity failure.

Stability also derives from a failover cluster feature implemented in the YateHSS/HLR solution. The network services take place in a single node (one YateHSS/HLR server) of the cluster, but each node replicates the events to the other nodes. All nodes have the same replicated information and if a node breaks, another one takes its load automatically.

clustering_blogpost_failover Failover cluster feature of the YateHSS/HLR solution

Our solution’s flexibility comes with a big advantage: the simplicity of scaling up in case your network grows. Adding a new node to the cluster is a process that takes less than one hour.

clustering_blogpost_new_nodeScalability feature of the YateHSS/HLR cluster solution

There isn’t any maximum limit of how many HSS/HLRs clusters to deploy in a network. If you need to understand the technical details behind the cluster, please take a closer look to our documentation regarding the YateHSS/HLR cluster architecture.

A few final words…

Think about the project that is technically and financially sustainable with YateHSS/HLR. The YateHSS/HLR solution allows millions of IoT devices to connect and makes a wide variety of applications possible for final users.

We recommend the YateHSS/HLR as an excellent choice for MVNOs and IoT manufacturers entering a market, for its features and for the return on investment advantage in terms of business.

 

2G networks, to sunset or not to sunset

In recent years, network operators have faced an impressive rise in smartphone numbers, which, in turn, lead to a higher demand of packet-data. A 2015 Cisco report indicated that in 2014 alone mobile data traffic increased with 69% from the previous year. Many mobile carriers have already devised what they call ‘sunset plans’. While things might be a bit easier for subscribers, the situation is more urgent and concerning for M2M and IoT devices. The same Cisco report showed that in 2014 62% of all these intelligent devices were connected to 2G networks.

This is precisely the circumstance in which, in 2012, AT&T announced its decision to discontinue its 2G network to reuse the 850 MHz and 1900MHz spectrum for its 3G and 4G deployments.

However, AT&T is not the only operator in this situation. In Singapore, for example, all the nation’s operators (M1, SingTel  and StarHub)  will no longer provide 2G services by the end of 2016. From the 15 of September 2015 mobile dealers will stop registering 2G-only mobile devices. Similarly, the 2G spectrum will be reused for 3G and 4G services.

Telstra, the Australian carrier, has the same 2G decommissioning deadline as the operators mentioned above, since sales on 2G devices have dropped dramatically and 2G data traffic represents less than 1% of the network’s whole traffic.

It’s easy to see why some operators chose to discontinue their 2G deployments, yet these are still the best networks to provide for low-power IoT devices. To them it is old, very few subscribers are based solely in these networks and current data traffic rates demand for spectrum reuse. However, 2G is far from being obsolete. Telematics applications, smart meters, sensors, credit card transaction processors and the IoT lot demand low-bandwidth connectivity.  IoT needs an inexpensive, ubiquitous and consistent network and 2G is still the most suited technology for it.

2g_iotTherefore, the accelerated growth of intelligent connected devices will bring all the more revenues to mobile operators in the future. Early adopters of M2M and IoT technologies represent the group who will be affect the most by a potential sunset of 2G networks. Migrating their devices to 3G or 4G will be costly and time consuming. What’s more, the IoT business operating in rural areas will scramble to find viable connectivity solutions because 2G is still the most reliable technology in isolated and remote areas.

Furthermore, there are still mobile operators in the Western countries who can’t seem to get enough of their 2G networks. Take operators like EE, Vodafone, O2 and 3 in the UK; these carries are set to keep their 2G deployments up and running as long as there are still plenty of isolated areas which are solely covered by the reliable second generation technology. Ensuring an almost total coverage in the British Isles is only possible with 2G networks. Not to mention the cases in urban areas in which subscribers performing voice calls are moved to 2G when 3G data traffic is more demanding.

An Ovum 2015 report states that in some markets 3G networks are in fact more likely to shut down before 2G ones. Nicole McCormick, a senior analyst at Ovum concluded that: “2G is still an important source of revenue. LTE provides a better mobile broadband experience than 3G, and with VoLTE, LTE can handle the voice responsibilities of 3G. This points to the possibility that operators opt to close their 3G networks before they close 2G.” A relevant example pointing to this line of reasoning is Telenor Norway who decided to safeguard its 2G network for their M2M market and who will discontinue its 3G network by 2020.

It’s safe to assume 2G is here to stay because the world still needs it. From communities in developing countries to the whole IoT and M2M market, there isn’t quite any other communications technology like it.

Connecting public transport to the Internet of Things

Matched with contextual traffic data, information about the route and changing traffic conditions can be supplied in real time, so that both passengers and companies improve their planning efficiency.

Offering seamless and highly mobile IoT requires high bandwidth and thus only makes few applications practical.

Real-time location tracking is probably among the most common. Companies already use GPS to track their assets, but the data could also be used to offer riders accurate information about the time to destination, estimated arrival times, or traffic events.

On board entertainment systems offer a more personalized travel experience; location information combined with events information can drive travellers to activities or sites relevant to their itinerary and preferences.

In terms of planning, cameras and sensors installed in public transportation means and in their surrounding premises can collect information to estimate traffic flows and better plan and allocate their resources.

Safety can be improved with live video streaming, allowing a more rapid intervention and enabling the prevention of misconduct.

To make these solutions possible, it is essential to provide high bandwidth connectivity, and that is in itself a challenge. Even with Access Points installed in vehicles, resources from the mobile network still need to be accessed. Technology try-outs in this sense include LTE-A carrier aggregation to increase the bandwidth (as discussed here), MIMO systems to enhance spectral efficiency, or small cell technology to bring the radio cell closer to the device.

Alongside, connectivity on-the-go needs to be managed at carrier level in the sense of providing seamless coverage irrespective of the mobile operator. As this 2014 EU report underlines, ubiquitous connectivity for public transport requires ‘terminals to get connected regardless of the operator exploiting the access network’, and ‘avoid services cut-offs’. Tower infrastructure sharing is the solution adopted today, and it is particularly viable because it also allows to reduce their operating costs and provide additional capacity, reports the GSMA.

Internet of Things applications have already started to enable some of these trends in large metropolitan areas all over the world. Transport companies, mobile operators, and platform providers can leverage IoT solutions for real-time tracking and monitoring, improved efficiency and safety, and a better travel experience.

Predictions about numbers of IoT/M2M connected devices that we’re supposed to be seeing in the very near future are astounding. So we can only imagine what the huge amounts of data collected will lead to once it’s analyzed and turned into ‘actionable’ information.

A snapshot of SS7ware at IoT Evolution Expo in Las Vegas

SS7ware was at IoT Evolution Expo in Las Vegas last week – if you haven’t been around to see us, here’s a recap of the most important events.

It was great to see so many companies, including manufacturers, mobile operators, M2M platform companies, developers, service providers, gathered to discuss innovation, management, and security in the M2M and IoT ecosystem.

Through 4 days of keynote presentations, panel discussions, exhibitor booths, live demos, and case studies, we also had a lot on our plates, as you can see in the gallery below.

This slideshow requires JavaScript.

CEO Diana Cionoiu was invited to take part in the ‘Carrier Aggregation for Public Transport’ panel which took place Wednesday, discussing the possibilities to create a new experience for public transportation using the bandwidth capabilities in LTE and LTE-Advanced.

SS7ware also made it to the AT&T Fast Pitch finals, where we could talk about our software-defined mobile network solution among a variety of other innovative ideas bringing IoT to both businesses and individuals. Two interviews for the TMC team for their website, and a live SatSite demo were also on our list. Everyone around the Exhibit Hall on Tuesday had the chance to watch devices connected to SatSite work seamlessly. We simply plugged it in to make a GSM phone call between the two registered devices; all in the blink of an eye.

To wrap up, thanks to the TMC team for doing an amazing job organizing the event! Here are some take-aways to keep us focused on IoT/M2M developments in the near future:

  • when it comes to connecting the home, security is of utmost importance
  • connecting ‘everything’ comes with increased responsibility and safety challenges
  • new players like Google, Amazon, or Facebook are reshaping the ecosystem
  • who does what in the new business environment

For more content, don’t forget to follow us on Twitter, Facebook, and LinkedIn.

Driving the Internet of Things with carrier aggregation

Internet of Things connectivity must reach a middle ground between coverage and bandwidth to provide for applications with very different requirements.

While it’s true that tracking, measurement, control, or monitoring systems in rural or remote areas have lower traffic and rely on low-bandwidth technologies such as GSM, a different trend is growing. A whole range of M2M and IoT applications using live video, rich media, on-the-go content, multi-user sharing, demand a high network capacity that can be provided today with LTE.

Carrier aggregation (CA), the key concept in LTE-Advanced, allows operators to supply even higher bandwidth than LTE, to support such connected devices. As its name suggests, carrier aggregation combines two or more carriers in order to offer a greater throughput.

Using CA, new transmission channels can be created using the operators’ existing frequency spectrum. It is available in both TDD and FDD systems, and can be achieved by combining carriers from the same frequency band or from different frequency bands, as shown below.

Capacity is essential for IoT, as hundreds of devices are in constant communication with the network. In CA systems, up to 100 MHz bandwidth can be reached, as each component carrier can have a maximum bandwidth of 20 MHz, and a maximum of 5 carriers could be aggregated. In practice though only two carriers have been used so far.

Operators may also opt to combine carriers from different spectrum bands, as some are already reported to be doing, and this can be very practical given that LTE networks are currently being deployed on distinct frequency bands.

For carrier aggregation to work on both ends, devices must be able to detect and read the multiple frequencies sent by the radio network. In theory, a peak speed of 500Mbps for uplink and 1Gbps for downlink could be achieved with carrier aggregation.

In commercial deployments so far, as reported recently by the GSA, a maximum downlink 300Mbps has been achieved on a number of devices including smartphones and mobile hotspots. According to the same report, only 88 commercial implementations of carrier aggregation systems have been launched so far in 45 countries, but others are underway.

Carrier aggregation can be used to offer increased bandwidth for IoT, and it can also improve coverage by combining low frequency carriers with high frequency ones. Trade-offs of this system include battery life, but we’ll talk more about LTE for IoT next week during IoT Evolution Expo.

IoT management at the network’s edge

IoT has enabled users to access control over a multitude of “smart” devices while also unlocking unlimited possibilities for operators in new markets, such as farming, utilities and transportation. A Gartner study claimed that by 2020 there will be around 26 billion IoT connected devices. Imagine the data they collect and the necessary technology required to process it.

Until recently, cloud computing was the answer for storing and processing data collections from IoT applications. However, despite being a cost-effective model in appearance, the handling data in a centralized cloud site is facing new capacity, data management and security challenges. Analysts at Gartner have also raised the alarm on the inefficiency, from both a technical and economical standpoint, of sending all of the gathered data to a single site for processing.

Fog Computing is a new technical solution that allows data to be aggregated in larger number of smaller remote data centers for the initial analysis, and only afterwards sent for storage into the cloud. The term “Fog Computing” is recent and refers to a technology that is an extension of cloud computing. It’s main characteristics are: the geographical distribution of a large number of processing nodes (application servers), its extended mobility, a low latency and location recognition, wireless access and the predominance of real-time applications.

Fog Computing is a virtualized layer between the IoT devices and the conventional data centers in the cloud, that delivers processing, networking and storage services. It is also known as edge computing, because it is usually located at the edge of the network. It allows for a new set of applications and services solely dedicated to routing, managing and analyzing IoT data, relieving data centers from processing and storing the large volume of measurements collected from IoT devices and sensors.

This is where our SDMN YateBTS-powered solution responds to the current needs of IoT data management. To deploy a fully functional Fog Computing ecosystem, operators can install scalable application servers distributed in each cell site for data analysis and monitoring, without the traffic cluttering the core network. They are geographically distributed and connect to each other to perform a “close to the ground” intermediary layer between IoT devices and the cloud, providing security, low latency and high resilience.

SatSite base stations can redirect the traffic locally to the application server, based on the IMSI specific to the device.

fog_computing

Main features:

  • geographical distribution – Fog Computing nodes in application servers are located in each cell site and cover a wide portion of the field.
  • large number of nodes – closely connected to the geographical distribution
  • real-time connectivity – all the Fog application servers communicate directly with the SatSites located in their proximity, ensuring that they interact with client devices without passing through the core network for each IP data session

Our simplified mobile network architecture allows an easy deployment of Fog platforms to deliver real-time analytics, localization services and resilient applications. It reduces the processing burden in cloud data centers without overcharging the core network, making it ideal solution for IoT networks.

YateBTS in the age of IoT

These days, everybody’s talking about the Internet of Things. And it’s no surprise that everybody loves it; from operators, who see a chance to attack new markets and better retain customers, to urban consumers who can connect a whole range of devices to an app on their smartphones, and farmers who can use technology to optimize their activities and maximize production.

Bringing IoT to such different audiences while maintaining a high quality of service and an efficient use of network resources is a challenge for most carriers’ current infrastructure capabilities and cost strategies. In fact, a critical concern when it comes to creating IoT infrastructure for new areas is laying the ground for that infrastructure – that is, mobile network coverage.

The number of IoT applications designed for farming and livestock breeding is on the rise, but their actual penetration in rural areas is limited to regions with existing GSM/GPRS infrastructure. Remote and rural areas offer mobile operators enticing prospects not only in terms of IoT coverage, but also in terms of connecting these new customers to their entire range of services such as voice, SMS, or data. But due to the high investment requirements for equipment, civil infrastructure, or maintenance, operators are still reluctant in building mobile networks in there areas.

The success of carriers setting up new networks in remote locations depends greatly on keeping investment and operational costs down, as well as on basing their network equipment choices on redundancy, power efficiency, and flexibility. A reliable IoT infrastructure amounts to operators providing continual service, seamlessly, and in very variable weather and terrain conditions. The geography of each area and the specific needs of communities influence every decision going from civil infrastructure to power supplying and equipment maintenance. In areas with low infrastructure where grid power isn’t available, for instance, carriers must rely on alternative power sources to successfully deploy new networks.

blog_iot_2015-5-26_version2.1

YateBTS-powered IoT applications

A base station like the YateBTS SatSite offers a reliable and flexible solution for carriers to bring mobile coverage to remote rural areas. SatSite is a 2.5G low-power, lightweight base station that allows it to be easily installed anywhere from hill tops to outlying crop fields. Practical for lightweight cell sites, it can be operated in single or three-sector sites using a single solar panel. This generates a substantial reduction in operators’ initial investment costs but also in operating cell sites in the long-run.

SatSite’s low operating costs make it a particularly suitable solution for small farms and rural households, where resources are more scarce and used less efficiently. Access to IoT applications can support these communities in rendering farming activities more productive and sustainable. The flexibility of SatSite’s architecture suits the requirements of specific IoT solutions. Used for any range of applications and devices, from water pumps and soil measurement sensors, to herd tracking and monitoring, SatSite optimizes resource allocation to allow carriers to efficiently adapt their networks to the specific demands of each location.

In rural areas, access to IoT infrastructure can make it possible to attain better farming results, optimize productivity, and increase the overall quality of life. Basic mobile services can create new standards for health care, education, as well as social and economic development of these areas. Operators can play the leading role in this process, provided that their decisions successfully combine cost effectiveness for themselves, and service quality for consumers.