The Case for the Unconnected Billions

Sending text messages, going on hour-long calls, or live-streaming videos are such an integral part of our lives that most of us take them for granted. And yet around 3 billion people live, today, in areas without access to basic infrastructure – be it remote islands in the Pacific, developing extra-urban areas, or isolated rural areas everywhere around the world.

Mobile communication can connect these people with one another and with technologies that can prove to be vital. Mobile data enables job seeking in wider area ranges, instantly accessing health care information in case of emergency or risk, or keeping farmers in line with market prices and trends.

In remote, unconnected markets, bringing voice and data coverage can be best achieved using GPRS, which provides wider coverage than 3G, and is easier to adapt to rural, remote, or low density areas. In such places, traditional cellular networks have the disadvantage of being economically counterproductive to deploy, and operators are unlikely to invest in hefty infrastructures that generate relatively little revenue from usage compared to the networks’ lifespan maintenance costs.

The YateBTS technology addresses these issues differently than most other approaches to mobile networks. 2.5G networks using SatSite and YateUCN are a simplified, flexible, and low-cost solution that can be adopted anywhere in the world.

Lightweight, low-power sites

SatSite is smaller than typical base stations which makes it easy to build lightweight cell sites that are especially profitable in higher density networks. SatSite’s low power requirements allow operators to plan self-sustaining mobile networks running on solar or wind energy, avoiding the use of costly power grids or diesel systems.

Bandwidth-efficient backhaul

Unlike traditional networks, a YateBTS/YateUCN mobile network allows bandwidth savings of up to 60%, by using the GTP protocol across the entire network.

bring_cov_2015-6-4_version1.2SatSite acts as a BTS/BSC communicating with the YateUCN core network over GTP, without using any additional network nodes, to simplify the network architecture and minimize the backhaul load. Data sessions in networks using YateBTS SatSite can be established either locally, by assigning the IP directly in the SatSite, or in the YateUCN core network, adapting to the constraints of each location.

SatSite unifies the BTS and the BSC from traditional radio access networks architecture, to eliminate the Abis radio interface used to direct traffic between the BTS and the BSC. In conventional cellular networks, the BSC handling all the communication between the core network and the devices leads to high costs and a substantial load on the network. SatSite base station can communicate with YateUCN over satellite, using GTP to replace the signalling interfaces normally used inside the radio access network and to/from the core network.

A satellite backhaul architecture is adapted particularly to sparse networks in areas with a low density populations, where cell sites are far from the core network; satellite allows operators to serve any location, and improve bandwidth performance for both voice and data services. Combined with the light design and an autonomous operation of the SatSite base station, backhaul over satellite makes YateBTS/YateUCN networks ideal for extending connectivity to uncovered areas.

YateBTS and YateUCN™ make a perfect match for SDMN

YateBTS and YateUCN can be used together to build complete software-defined mobile networks.

YateBTS is a software implementation of the GSM/GPRS radio network. It runs on any Linux and uses a generic digital radio board, the Nuand BladeRF. The entire physical layer is implemented in software, which is different from the usual FPGA- or DSP-based radio design.

For the core network there’s YateUCN, the unified core network based on Yate. YateUCN is a Linux application that can run on commodity servers. It implements the functions of 2.5G and 4G core networks and is easy to integrate in existing mobile operator infrastructure. Like YateBTS, YateUCN replaces hardware routers and transcoders with pure software.
Together, YateBTS and YateUCN form complete software-defined mobile networks, networks that are affordable to build and operate, and networks that can support 2.5G, 4G or even both at the same time.
There are several advantages to the YateBTS+YateUCN approach:
  • Upgradable – We can add new features, like EDGE, with software upgrades or even replace 2.5G GSM/GPRS with 4G LTE using the same hardware.
  • Manageable – Because the entire system is Linux, we can monitor and manage every aspect of the software in a flexible way.
  • Affordable – A pure software approach has much lower development costs and relies on commodity computing hardware.
  • Flexible – The hardware is protocol-agnostic and can be reconfigured to support any mix of technologies.
  • Scalable – The capacity of the core network can be increased just by adding more servers.
Compare this to a conventional mobile network, with its hardwired base stations in the field and big iron like the Cisco AR550 or an Ericsson Mobile Switching Center in the core. It’s all single-purpose equipment, expensive or impossible to upgrade, and all based on proprietary software and hardware with big licensing fees, special training and support requirements.