Modernizing GSM networks – an ever difficult feat

GSM has turned 24 this year and throughout this time showed that it is invaluable for telephone calls and M2M applications. Many industry observers estimate that 2G will continue to be in use even after 3G is discontinued. But GSM networks are confronted with the difficult task of adapting to the new operating environments.

The modernization of GSM is particularly arduous when considering that equipment vendors and solutions providers have concentrated on developing components for newer networks (3G, 4G, even 5G) and less on innovating GSM network components. The SatSite is designed to serve either GSM, LTE, or mixed GSM/LTE networks working directly with the unified core YateUCN, proving that there’s still plenty of room for innovative results for GSM deployments.

The technology behind our GSM network equipment allows new techniques like radio resource sharing with LTE, running GSM from a remote radio head, applying SON or beamforming technologies, which are typical for LTE, to be applied to 2G networks. The result is a simplified and flexible network architecture, better management and reduced costs.

Spectrum sharing
The SatSite base station is based on commodity, off-the shelf,-hardware and can be software-‘switched’ to provide either GSM, LTE, or both. When running YateBTS for GSM, it communicates directly with the unified core network, eliminating the base station controller (BSC). This architecture, where the BTS connects straight to the core network and communicates to other BTS in the network over peering protocols is very similar to the architecture of LTE.

This is also what makes it possible to support multiple technologies in the same equipment. If one BTS uses the same frequency bands to provide both GSM and LTE access, operators may choose freely on how to allocate spectrum between them. Depending on the service use at a given time, operators can assign prioritize voice over data services and vice versa. We’ve detailed spectrum sharing between GSM and LTE in the SatSite here.

Self-Organizing Network
SON techniques feature dynamic self-configuration, self-optimization, and self-healing functions, which can be achieved due to the eNodeB not being controlled by a distinct BSC component as in the typical case of GSM. Without a BSC, SatSite base stations are able to connect to each other over peering protocols, allowing an exchange of neighbor information between units. This presentation offers more details on SON technology for mixed 2G/4G networks.

Beamforming
Beamforming relies on grouping the signals of multiple antennas and into one beam sent to a desired direction. It aims to reduce interference and obtain a better quality of a service for a certain user. Unlike MIMO, where the network sends different parts of the data stream on different antennas, beamforming combines the signals from the different antennas and sends them to one device. What’s more, as opposed to MIMO, beamforming does not require any support from the handset, making it suitable for use in any mobile network technology, be it 2G, 3G, 4G or even 5G, in the future.

Benefits of optimizing GSM networks include a better management of the network resources, reduced infrastructure costs and maintenance efforts, and the flexibility to upgrade or reprogram network functions.

Increasing the security of VoLTE with YateUCN

The emergence of VoLTE-capable devices is raising new security concerns for mobile network operators, as existing IMS deployments expose vulnerabilities in VoLTE handsets to other devices in the network. YateUCN unified core network brings a solution to these concerns by isolating SIP and RTP call legs between handsets.

b2bua_vs_sip_proxy_2015-10-13_image1

LTE uses an IMS network to deliver VoLTE (voice services), and does so via Session Initiation Protocols (SIPs). This makes the IMS network act as a SIP proxy, performing routing, session control, and registering the UE to VoLTE. Voice is delivered through RTP from one UE to the other. Therefore, in case of a security attack, it is theoretically possible for a third party to send additional information through a forged SIP message via the IMS, to the target UE.

b2bua_vs_sip_proxy_2015-10-13_image2

Voice communication in 4G LTE can also be subject to malicious acts at various layers of the channel, including at the IP packets level, the UDP, RTP, or even the codec level.

What’s more, SIP is also implemented directly in the baseband processor of the latest generation smartphones to allow subscribers to use VoLTE, making it easy to for a potential smartphone takeover to occur.

b2bua_vs_sip_proxy_2015-10-13_image3

For SIP signaling, YateUCN acts as a Back-to-Back User Agent server, ensuring a secure transmission of data. B2BUA allows SIP communication from the originating party (or User Agent) to be terminated at the one side of the network, where the message is verified. Any harmful information included in the received SIP message is eliminated and the message is recomposed to include only the information needed for the SIP to reach the end party.

The risk of attacks decreases since malicious data is not automatically allowed to pass from one UE to the other, and the split SIP messages are negotiated independently on the originating and terminating sides.

Unlike current IMS deployments, YateUCN allows the same message decoding, verification, and re-encoding of RTP by acting as a proxy. This also simplifies the deployment of Voice over LTE, since handsets only need to connect to YateUCN server.

SS7ware @ITU Telecom World 2015

This week we’re at ITU Telecom World, the United Nations Specialized Agency for Information and Communication Technologies conference in Budapest! Let’s meet!

October 12 through 15, SS7ware Inc. team is exhibiting at stand P13, in Pavilion F. Here are the highlights for the week:

David Burgess will be representing the SME community as a panelist in this Business-to-Government dialogue.

  • Live SatSite demonstration: Wednesday, October 14, 11:00 – 12:00, stand SS7ware P13

A live demo session followed by Q&A will be organized at our stand.

The SatSite lightweight, low-power base station is simply plugged in to allow calls between GSM handsets.

  • Exhibition: Monday, October 12 – Thursday, October 15. Stop by stand P13 anytime during the exhibition:

Monday 12 October: 10:30-18:00

Tuesday 13 & Wednesday 14 October: 10:00-18:00

Thursday 15 October: 10:00-16:00

Follow the news on Twitter (@yate_voip), Facebook, connect to us on LinkedIn or drop us a message if you wish to meet.

GSM and LTE, 2 technologies in 1 base station

LTE for bandwidth and GSM for voice are a match made in heaven for subscribers. The roll-out however, not so much. Running them both from the same radio equipment (BTS) can be the answer. SatSite can run both YateBTS (GSM) and YateENB (LTE) at the same time, in the same spectrum, using the same radio hardware.

Software-defined BTS

This is made possible by replacing commonly used FPGA and DSP boards with one Intel Atom chipset. Both the GSM YateBTS and the LTE YateENB are modules implemented in software, allowing the base station to be reprogrammed or reconfigured to support new protocols. A base station can run GSM at first, and can be later software-upgradeable to LTE, running multiple air interface protocols using the same radio, at the same time.

Mixed 2G/4G spectrum allocation

From a spectrum point of view, as seen in the image below, the mixed GSM/LTE technology enables a base station to be software-configurable for up to 4-TRX/ARFCN. A base station can use the 850, 900, 1800, and 1900 MhZ bands for both GSM and LTE, meaning that it will allocate two ARFCN to GSM and will use the remaining spectrum for LTE.

ss_mix_spectr_2015-10-6_pic1_version1.1Based on the subscribers’ activity (data vs. voice), operators can assign in software the spectrum priority for either LTE or GSM, so LTE gets a higher priority if there is a lower use of voice services. This optimizes the resources allocation in the network and supplies better access to users.

YateBTS and YateENB – Yate modules

Yate is an underlying part of the software architecture of our mixed 2G/4G RAN. It has a highly expandable architecture that provides unified management and monitoring. Both YateBTS and YateENB are software modules based on Yate. Yate’s SDR architecture enables the LTE and the GSM modules to use the same radio hardware. You can find out more about Yate’s multiple modules here.

ss_mix_spectr_2015-10-6_pic2_version1.1Yate’s SDR architecture also enabled us to replace the conventional, special purpose equipment combination of a baseband unit (BBU) + a remote radio unit (RRU), with a single unit. With this technology we implemented all the functions of both a conventional base station and a base station controller, eliminating the costly Abis interface for traffic and signaling, as well as partial functions of an Mobile Switching Center (MSC), in terms of mobility, power and frequency management and handover.

The mixed 2G/4G RAN technology is embodied in our SatSite base station. SatSite acts more like a conventional eNodeB, even when running on GSM, because it uses IP backhaul for both 2G and 4G. It also contains the IP list of all neighboring SatSite units.

Using off-the-shelf hardware and a generic operating system, SatSite embraces everything SDR stands for, and is the solution for an easy adoption of new standards or technologies, even 5G in the future.

A forecast on the evolution of radio access networks

This month we participated at an active antenna workshop in Warsaw. The event was well attended by many RAN managers, strategists and planners from various mobile operators around the world. There were also a large number of radio head and eNodeB, antenna, semiconductors and materials and test equipment vendors.

Crowded towers

There was a lot of talk about crowded towers. The majority of towers are already very crowded and at their mechanical limits. Because new equipment cannot be added, often times the only solution is that of replacing existing equipment with new antennas and radios. Since everyone in the industry wants ‘cleaner’, less crowded towers, the experts found that radio equipment capable of running on both GSM and LTE would help reduce the overall load on cell site towers.

active_anntenna_workshop

3G sunset

Within this workshop quite a few of our beliefs regarding the future of the UMTS have been confirmed:

  • In a number of markets UMTS 3G will be discontinued, while 2G will continue to stay, allowing for 2G/4G mixed networks to flourish.
  • While 2G spectrum allocation will diminish in time, GSM will still be alive and well for a while.
  • In many markets, UMTS 3G spectrum is already re-farmed for 4G LTE.

Massive MIMO?

As the workshop’s theme was the evolution of active antennas, a lot of the conversation revolved around MIMO technology and MIMO antennas. The 2×2 MIMO configuration is becoming a standard for mobile networks, and 4×2 MIMO is expected to become the standard in two to three years. There is little prospect in the industry for LTE devices to support more than 2 MIMO channels, meaning that the most practical MIMO configuration is the Nx2 variety. One of the most important current issues is that many LTE devices still don’t support MIMO.

Vertical sectorization

In terms of vertical sectorization, the consensus is that it can be useful only when combined with fast-responding self-organizing networks (SON). Vertical sectorization is only efficient when used throughout the whole network, and no just in a few cell sites. However, vertical sectorization will be obsolete once most LTE devices will support MIMO.

VoLTE perspectives from the RAN side

RAN experts present at the workshop discussed VoLTE’s slow adoption. One reason for this is that for any given cell site, the service range for VoLTE is typically smaller than that for UMTS’ or GSM’s circuit-switched service. It’s range is also limited by the overall uplink performance. However, MIMO antennas are expected to improve VoLTE’s uplink performance.

Summary

It was a pleasure to meet with so many representatives from both operators and vendors and hear their insights. To answer to the current needs of the industry, we developed combined 2G/4G software-defined radio systems. Our SatSite macro base station will support GSM and LTE independently, as well as at the same time, using a common radio access. This event was a confirmation that we are on the right track, as mixed 2G/4G networks are the future of mobile networks.

SDN and beyond

Software-defined networking (SDN) and network function virtualization (NFV) are new approaches to designing and operating mobile networks, granting operators better management possibilities and better use of the network capabilities.

NFV represents the virtualization of network nodes roles, which culminates in separate software implementations performing the functions typically executed by hardware components. At the other end, SDN uses the virtualisation technology to split the control plane (where you need flexibility) from the data plane (where you need speed/performance). However, the price for this is complexity which translates into high operation costs.

Operators benefit from such frameworks because they increase the network capacity and performance, and allow for better manageability.

The YateUCN approach recognizes the usefulness of separating the user plane and the data plane, but it implements both of them in software. The control plane is implemented in the user space for flexibility while the user plane in the kernel space for speed.

As a result, operators who deploy YateUCN networks will gain from considerably scaling down equipment, and will have better control over the network scalability and performance requirements. The image below shows the YateUCN implementation and a common SDN deployment using an OpenFlow switch.

Unified Core Network vs. Common SDN deployment

Common NFV/SDN implementations rely on virtualizing the EPC, so that the functions of the MME (Mobility Management Entity), the SGW (Serving Gateway), and the PGW (Packet Data Network Gateway) are each implemented in software and run on the same hardware. Drawbacks of this approach include:

  • the separation between the control and user plane is achieved by means of a switch, usually hardware-based and external to the network. This is a limitation of software-defined network functions;
  • the switch is designed to replace the PGW and obtain the IP connection which it sends to the eNodeB over the user plane. This means that it must support both GTP protocol for the user plane and IP which determines the high costs for such equipment.
  • the complexity of NFV requires additional effort from the network to accommodate it, which increases the overall cost of the solution.

The implementation of YateUCN differs significantly from the above.

First, it uses commodity hardware, so no special-purpose equipment needs is needed. Simply put, YateUCN is a COTS server, which completely diminishes investment, staff, space, and power requirements.

Secondly, YateUCN differs from virtualized EPC because it implements a unique software, based on Yate, that performs all functions of the MME, SGW, and PGW. All-software implementation also means that multiple protocols (Diameter, SS7) are equally implemented in YateUCN, and no additional implementations are required for the core to connect to the Home Subscriber Server or IMS. This helps operators cut down on highly specialized staff needs and facilitates inter-working with legacy networks.

Thirdly, instead of using a hardware switch, YateUCN implements it in the Yate kernel. Because the Unified Core Network is based on Yate, an expandable Linux-based telephony engine, it was possible to integrate a software switch in the core software, allowing for much faster data processing and eliminating the need to work with multiple vendors.

YateUCN core network solution removes the barriers of entering the market due to simplicity, scalability and low cost. YateUCN specifications features and specifications list can be accessed here.

Definition: MIMO

LTE brought forth a variety of equipment and technologies. One of these new technologies is Multiple Input Multiple Output, also known as MIMO. It allows the use of use of multiple antennas in wireless communications is one of the main reasons why LTE has such high bandwidth rates.

It all started with the V-BLAST (Vertical-Bell Laboratories Layered Space-Time) project, in 1996, which is, in fact, at the basis of MIMO systems. V-BLAST was a detection algorithm of multiple signals whose main purpose was to reconstruct the multiple received signals into a single, faster stream of transmitted data. This, of course, is precisely why MIMO does.

The principal application of this technology is embodied in MIMO antennas, particularly used in LTE mobile networks. As opposed to SISO (Single Input and Single Output) – an antenna system with one transmitter and one receiver – two 2×2 MIMO antenna systems will use 2 transmitters and 2 receivers to generate 4 paths for transmitting and receiving different data at the same time. The two transmitters send different parts of the same data stream simultaneously, while the receivers have to piece them back together. MIMO increases overall performance and range and is able to send more data without additional power or added bandwidth requirements.

mimo_antenna_2015-9-3_version1.2Typically, radio signals traveling through the air are prone to being affected by various phenomena such as: fading, interference, path loss and more. What’s special about MIMO is that it does wonders in multipath environments, increasing the data throughput and lowering the bit error rate. MIMO is able to identify one signal from another at the receiver side because they have been altered differently by multipath. The receivers can spot the ‘clues’ that multipath left behind to correctly decode the received signals into a single faster data stream. As opposed to MIMO, SISO systems perform poorly in multipath conditions. Considering that LTE has gained such momentum in urban ares, the home ground of multipath, it’s easy to understand why 4G uses MIMO antennas.

As mentioned above, a 2×2 MIMO antenna will send each data stream through two independent channels to overcome fading. This is a concept called ‘diversity’ and it ensures that at least one data stream will be less affected by fading, increasing the chances of the receiver to decode more data correctly. ‘Polarization diversity’ is a ‘diversity flavor and is also used in MIMO systems. To give a simple example, polarization diversity would translate in using antenna pairs polarized orthogonally, either in a vertical/horizontal position or slanted at ± 45º. 

To sum up, the MIMO technology used in LTE antenna systems increases overall data throughput, reduces co-channel interference and multipath propagation effects, improves the signal to noise ratio and reduces the bit error rate.